Cyanotic
congenital heart disease (CCHD), which according to its prevalence is accounted
around 0.608 per 1000 live births. One of the most common problem
among CCHD patients is secondary erythrocytosis leading
to polycythemia and hypervsicosity that can be overcomed temporarily by phlebotomies.
Although phlebotomy is proven to reduce the risk of coagulopathy and thrombosis
among patients with polycythemia, removing the circulating red blood cells
(RBCs) that contain high amounts of iron-containing hemoglobin could lead to
iron deficiency anemia.
Objective: To evaluate mean corpuscular volume (MCV) and red cell distribution width (RDW) changes among children with uncorrected cyanotic congenital heart disease (CCHD) who underwent phlebotomy procedure.
Method: A prospective study with a pre-post design was conducted with inclusion criteria was children with CCHD who came for phlebotomy procedure (hematocrit level >65%) and observed within 6 months since initial phlebotomy. MCV and RDW levels were measured before and after the phlebotomy procedure.
Result: From January 2016 to December 2020, 42 patients participated in this study. The subjects who underwent phlebotomy procedure in 6 months more than 2 times were 54.8% with median age was 7 years and the most subject was female (52.2%). MCV level decreased from 78.4 fL became 71.9 fL and RDW level became increase from 18.28% to 20.53%. Mean difference of MCV in initial measurement was 1.45 (P=<0.05, 95%CI 0.78 to 2.12) compare to 0.72 (P=0.31, 95% CI -0.70 to 2.23) at last measurement. Meanwhile, mean difference of RDW was 0.75 (P=<0.05, 95% CI 0.32 to 1.17) compare to 0.71 (P=0.04, 95%CI 0.04 to 1.39) in the last measurement.
Conclusion: Phlebotomy procedure could lower the level of MCV and increase the RDW level among children with uncorrected CCHD that indicates of iron deficiency anemia. Further study should be performed to evaluate the causes and effects of these changes.
Keywords: pediatric, cyanotic congenital heart disease, phlebotomy, mean corpuscular volume, red cell distribution width
INTRODUCTION
The
prevalence of cyanotic congenital heart disease (CCHD), is accounted for 5.7%
until 19% with incidence around 0.608 per 1000 live births.1-3 One
of the most common problem among CCHD patients is secondary erythrocytosis policythemia
and hyperviscosity with prevalence around 22% - 37%.4-6 Phlebotomy,
which means the removal of patient’s blood is the way to overcome this problem temporarily.5-8
In the case of uncorrected CCHD, European
Society of Cardiology (ESC) suggests that phlebotomy performed in patients
with the initial hematocrit (HCT) level is at least more than 65%. Although
phlebotomy is proven to reduce the risk of coagulopathy and thrombosis among
patients with polycythemia, removing the circulating red blood cells (RBCs)
that contain high amounts of iron-containing hemoglobin could lead to iron
deficiency anemia.7
Iron deficiency anemia (IDA) in CCHD
can diagnosed by affordable criteria including mean corpuscular volume (MCV)
and red cell distribution width (RDW).9 A
study conducted by Barton and Bottomley showed that children with CCHD have significant
high value of MCV due to rapid hematopoiesis stimulated by prolonged hypoxic
condition.10 On the contrary, a previous study showed that 11.1% of
children with CCHD had low MCV caused by iron deficiency anemia but the cause
of this phenomenon is unknown.11 Similar study conducted in Sanglah
Hospital showed that children with uncorrected CCHD who undergone phlebotomy
procedures in 6 months had a lower level of MCV.12 Children with
CCHD who experienced IDA, also had RDW level >14.5%.13 As far as
we know, study about repeated phlebotomy among children with uncorrected CCHD
especially the impact on alteration of
MCV or RDW is still limited and not well known. Based on that
background, we want to know MCV and RDW changes in children with uncorrected
CCHD who underwent phlebotomy procedures.
METHODS
This prospective study with pre-post scheme that was executed from
January 2016 until December 2020
in Sanglah General Hospital Bali. The inclusion criteria of this study were
children aged 0-18 years old with CCHD, have not undergone any corrective surgery for the defect yet, and undergone
phlebotomy procedure due to policytemia (hematocrit level >65%). Exclusion
criteria were incomplete medical records, children with history packed red cell
transfusion and undergone phlebotomy before. The sample size of this study was
42 subjects.
Cyanotic congenital heart disease was defined as a
congenital heart malformation that has mixed shunting, thus making the amount of
oxygen circulating lower than normal, which visible clinically as cyanosist or
oxygen saturations measured by pulse oxymeter. The cardiac diagnosis was
classified into two major groups which increase pulmonary blood flow (including
transposition of the great arteries (TGA) and Double outlet right ventricle
(DORV)) and decrease pulmonary blood flow (including tetralogy of Fallot (TOF),
tricuspid atresia, pulmonary atresia, and complex CCHD). The frequency of
repeat episodes of phlebotomy was defined by how many times the subjects
undergoing the phlebotomy procedure within 6 consecutive months from the
initial procedure. MCV and RDW levels were measured before and after the
phlebotomy procedure. Decreased MCV was defined if MCV level <80 fL and RDW
increased if RDW level >14.5%. Iron deficiency anemia (IDA) in CCHD defined
by Hb <15 gr/dL and MCV <80 fL.
Continuous
data will be presented in mean and standard deviation if distributed normally,
or median and range if not distributed normally. Categorical data will be
presented in percentage. Differences between quantitative groups with normal
distribution were evaluated with the paired t-test. P-value below 0.05 was
considered statistically significant, with 95% confidence interval. All
statistical analyses were performed using Statistical Package for Social
Sciences (SPSS) software version 26. This study was approved by the Ethics
Committee of Sanglah Hospital number 1790/UN14.2.2.VII.14/LT/2021
RESULT
A total of 42 subjects who met the inclusion criteria have participated in this study. We found that of 54.8% subjects who had undergone phlebotomy procedure >2 times with median age was 7 years and the most subject was female (52.2%). Subject’s characteristic is listed in Table 1.
This
study is evaluated the MCV and RDW changes in subjects who have undergone
phlebotomy procedures that have been done within the last 6 months. Complete
data was shown in figure 1 and 2. Total subjects who have undergone the
phlebotomy procedure for the first time in this study was 42 subjects. At first
measurement, mean difference of MCV pre-phlebotomy and post-phlebotomy was 1.45
(P=<0.05, 95%CI 0.78 to 2.12) and mean difference of RDW was 0.75
(P=<0.05, 95%CI 0.32 to 1.17). In the second measurement, the total subjects
who undergone phlebotomy procedure were 23 subjects with a mean difference of
MCV pre- and post-phlebotomy was 0.94 (P=<0.05, 95%CI 0.48 to 1.39).
Meanwhile, the mean difference of RDW in the second measurement was 0.8
(P=<0.05, 95%CI 0.43 to 1.18). Total subjects at the third measurement were
9 subjects. Mean difference of MCV level was 0.72 (P=0.31, 95%CI -0.7 to 2.23)
and mean difference of RDW was 0.71 (P=0.04, 95%CI 0.04 to 1.39).
Figure 1. MCV
changes in repeated phlebotomy
Figure 2. RDW changes in repeated phlebotomy
DISCUSSION
A study that examines the effect of
phlebotomy among Grown Up Congenital
Heart Disease (GUCH) patients showed significant reduction of MCV value
after the phlebotomy procedure (-5.703; p=<-0.001). They also found that in
the group where the patients underwent repeated phlebotomy, the MCV level is
even lower than the other group (78.37 + 4.3 vs 85.41 + 3.4;
p=0.0007).14 A similar study that assesses iron level changes in
patients who had 4 serial procedures within 6 months found that iron level was
decreased by 0.86 g/dL mL between the initial and final procedures. This
reduction is linearly correlated with the decreased level of MCV from 91.12 +
3.41 at the initial study to 90.48 + 3.92 at the end of the study.23
Another study that was conducted in Sanglah Hospital also showed that
45.2% of children with uncorrected CCHD who undergone > 2 times
phlebotomy procedures in 6 months had a lower level of MCV.12 In
this study, we found that the mean MCV level was decreased in the last
procedure compare to the initial procedure. The mean MCV level of
post-phlebotomy at the first measurement was 78.4 fL compare to 71.29 fL at the
third measurement.
This study found that the majority
of children with uncorrected CCHD have undergone phlebotomy procedures at least
two times within 6 consecutive months (54.8%). Phlebotomy is known to reduce
blood viscosity that can be seen changes in the hematocrit
parameter, where the removal of 250-500 ml of blood during the phlebotomy
procedure could decrease HCT value from a patient with the initial HCT more
than > 50%.14 HCT reduction after phlebotomy reveals the
benefit of phlebotomy in terms of balancing hemostasis and avoiding
thromboembolism events in CCHD patients.14-15
Despite the benefit of phlebotomy
procedures, patients with CCHD who underwent repeated
phlebotomies are risky for developing iron deficiency anemia. These microcytic
red blood cells are more rigid and less deformable therefore
increase the symptoms.16 Iron
deficiency in children with uncorrected CCHD is associated with low-quality
life, impaired exercise capacity, and also impaired oxidative metabolism as
well deranged cellular
immune mechanism which could lead to more morbidity and mortality.17 Iron
deficiency anemia is associated
with increase risk of cerebrovascular event in CCHD children whom
have HCT level over 60%. Initiation of iron supplementation since infancy to
late childhood period could be appropriate
in CCHD children to prevent iron deficiency anemia since the complications of thromboembolic
and nutritional iron deficiency are more frequent in this group.18 Olcay et
al., showed that iron supplementation (3 mg/kg of ferrous sulfate per oral 3
times daily for a month) increased serum ferritin level and prevented the
development of iron deficiency in the iron sufficient group.19
In children with CCHD, it is necessary
to diagnose iron deficiency and appropriate management. Complete blood count is
useful, cheap, easy, and ready even in primary medical centers. In a world
where cost-effectiveness became important phenomenon, we do imply that complete
blood count can effectively be used in the follow-up of children with CCHD. In
this study, iron deficiency anemia was diagnosed using RDW and MCV, affordable
validated parameters for diagnosing iron deficiency.20-22 When RDW
and MCV are considered together, iron deficiency anemia could be diagnosed with
98% accuracy.21
Increasing in MCV level has been
report in subjects with CCHD, but low MCV has
also been reported in CCHD children that had iron deficiency anemia. The trend
of high mean MCV in CCHD children is most likely as sequence of hypoxia activating
hematopoiesis therefore providing rapid supply of young red cells which are
likely to have higher MCV.10
This part be in the start of the discussion (solved) |
Red distribution width increased when hematopoietic
response amplified that found in cyanotic congenital heart disease. Previous
studies showed that patient with CCHD who had RDW level increased was
significantly associated with iron deficiency status accompanied by
polycythemia. Increased RDW has also been shown as early signal of iron
deficiency as result of anisocytosis.18 In
this study, we found RDW level increased
at the third measurement. The mean RDW level in the post-phlebotomy procedure
at the first measurement was 18.28% and in the third measurement, we found
20.53%.
In this study, we can find that the mean difference of MCV and RDW levels
in the first measurement was higher than the second measurement, and in the
third measurement, it became insignificant at the MCV level. The subjects in this study never underwent
the phlebotomy procedure before, which caused the total amount of blood
removed during the first phlebotomy procedure to become more than the second
procedure.
The limitation of this study is there is a
dispersion of phlebotomy timing for each patient due to different visit times
to the polyclinic or hospital and not analysis others risk factor that
associated with frequency of phlebotomy. In this study, we can be concluded that frequent phlebotomy procedures
could decrease the MCV level and increase the RDW level among children with
uncorrected CCHD which indicates iron deficiency. Further study should be
performed to evaluate the causes and effects of these changes.
CONFLICTS OF INTEREST
The authors
hereby declare no personal or professional conflicts of interest regarding any
aspect of this study.
FUNDING ACKNOWLEDGEMENTS
The authors received no
specific grant from any funding agency in the public, commercial, or
not-for-profit sectors.
REFERENCES